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Abstract: In this paper, based on the theory of calculus on time scales, by using Avery-Peterson fixed point theorem
for cones, some criteria are established for the existence of three positive periodic solutions of delayed dynamic
equations with feedback control on time scales of the following form:{

x∆(t) = A(t)x(t) + f(t,x(t),u(δ−(τ1, t))),
u∆(t) = B(t)u(t) +D(t)x(δ−(τ2, t)), t ∈ T,

where A(t) = (aij(t))n×n, B(t) = (bij(t))n×n are nonsingular matrix with continuous real-valued functions as
their elements, δ− be a backward shift operator. Finally, an example is presented to illustrate the feasibility and
effectiveness of the results.
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1 Introduction
Recent years have witnessed increasing interest in
ecosystem with feedback controls [1-6]. The reasons
for introducing control variables are based on main
two points. On one hand, ecosystem in the real world
are continuously distributed by unpredictable forces
which can results in changes in the biological param-
eters such as survival rates. Of practical interest in
ecology is the question of whether or not an ecosys-
tem can withstand those unpredictable disturbances
which persist for a finite period of time. In the lan-
guage of control variables, we call the disturbance
functions as control variables (for more details, one
can see [7]). On the other hand, in the literature, it
has been proved that, under certain conditions, some
species are permanence but some are possible extinc-
tion in the competitive system, for example, see [8].
In order to search for certain schemes to ensure all the
species coexist, feedback control variables should be
introduced to ecosystem.

Compared with advanced in the area of studying
the existence of a unique periodic solution [3-6], less
progress has been achieved in studying the existence
of multiple periodic solutions for higher-dimensional
functional differential equations with feedback con-
trol, especially systems with the coefficient matrix to
be an arbitrary nonsingular n× n matrix.

In fact, in the natural world, there are many
species whose developing processes are both contin-
uous and discrete. Hence, using the only differential
equation or difference equation can’t accurately de-
scribe the law of their developments. Therefore, there
is a need to establish correspondent dynamic models
on new time scales.

The theory of calculus on time scales (see [9] and
references cited therein) was initiated by Stefan Hilger
in his Ph.D. thesis in 1988 [10] in order to unify con-
tinuous and discrete analysis, and it has a tremendous
potential for applications and has recently received
much attention since his foundational work, one may
see [11-17]. Therefore, it is practicable to study that
on time scales which can unify the continuous and dis-
crete situations.

Motivated by the above, the main aim of this pa-
per is by employing a multiple fixed point theorem
(Avery-Peterson fixed point theorem) for cones to es-
tablish the existence of three positive periodic solu-
tions of the following dynamic equations with feed-
back controls on time scales:{

x∆(t) = A(t)x(t) + f(t,x(t),u(δ−(τ1, t))),
u∆(t) = B(t)u(t) +D(t)x(δ−(τ2, t)), t ∈ T,(1)

where T is an ω-periodic time scale, A(t) =
(aij(t))n×n and B(t) = (bij(t))n×n are nonsingular
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matrix with continuous real-valued functions as their
elements and A(t + ω) = A(t), B(t + ω) = B(t);
D(t) = (dij(t))n×n with dij(t) ∈ C(T,R+) and
D(t+ ω) = D(t) for all t ∈ T; δ−(τi, t), i = 1, 2 are
delay functions with t ∈ T and τi ∈ [0,∞)T, i = 1, 2,
satisfies δ−(τi, t + ω) = δ−(τi, t) + qω, i = 1, 2,
where δ− be a backward shift operator on the set T∗,
and T∗ be a non-empty subset of the time scale T,
q ∈ Z+; f = (f1, f2, · · · , fn)T is a function de-
fined on T × Rn × Rn, and satisfies f(t + ω,x(t +
ω),y) = f(t,x(t),y), for all t ∈ T,y ∈ Rn.
Here R = (−∞,+∞),R+ = (0,+∞),Rn

+ =

{(x1, x2, · · · , xn)T ∈ Rn : xi > 0, i = 1, 2, · · · , n}.
In this paper, for each x = (x1, x2, · · · , xn)T ∈

Rn, the norm of x is defined as ∥x∥ = sup
t∈[0,ω]T

|x(t)|0,

where |x(t)|0 =
n∑

i=1
|xi(t)|, and when it comes to that

x(t) is continuous, delta derivative, delta integrable,
and so forth; we mean that each element xi is contin-
uous, delta derivative, delta integrable, and so forth.

The organization of this paper is as follows. In
Section 2, we introduce some notations and defini-
tions, and state some preliminary results needed in
later sections. In Section 3, we establish our main
results for positive periodic solutions by applying
Avery-Peterson fixed point theorem. In Section 4, an
example is given to illustrate the feasibility and effec-
tiveness of the results.

2 Preliminaries

In this section, we shall first recall some basic defini-
tions, lemmas which are used in what follows.

Let T be a nonempty closed subset (time scale) of
R. The forward and backward jump operators σ, ρ :
T → T and the graininess µ : T → R+ are defined,
respectively, by σ(t) = inf{s ∈ T : s > t}, ρ(t) =
sup{s ∈ T : s < t}, µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >
t. If T has a left-scattered maximum m, then Tk =
T\{m}; otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous
provided it is continuous at right-dense point in T and
its left-side limits exist at left-dense points in T. If f
is continuous at each right-dense point and each left-
dense point, then f is said to be a continuous function
on T. The set of continuous functions f : T → R will
be denoted by C(T) = C(T,R).

For y : T → R and t ∈ Tk, we define the delta
derivative of y(t), y∆(t), to be the number (if it exists)

with the property that for a given ε > 0, there exists a
neighborhood U of t such that∣∣[y(σ(t))− y(s)]− y∆(t)[σ(t)− s]

∣∣ < ε|σ(t)− s|

for all s ∈ U.
If y is continuous, then y is right-dense continu-

ous, and y is delta differentiable at t, then y is contin-
uous at t.

Let y be right-dense continuous, if Y ∆(t) = y(t),
then we define the delta integral by∫ t

a
y(s)∆s = Y (t)− Y (a).

Definition 1. ([19]) A time scale T is periodic if there
exists p > 0 such that if t ∈ T, then t ± p ∈ T. For
T ̸= R, the smallest positive p is called the period of
the time scale.

Definition 2. ([19]) Let T ̸= R be a periodic time
scale with period p. A function f : T → R is periodic
with period ω if there exists a natural number n such
that ω = np, f(t + ω) = f(t) for all t ∈ T and ω is
the smallest number such that f(t+ ω) = f(t).

If T is ω-periodic, then σ(t+ω) = σ(t)+ω with
µ((t) is an ω-periodic function.

Definition 3. ([9]) An n × n-matrix-valued function
A on a time scale T is called regressive (with respect
to T ) provided

I + µ((t)A(t)

is invertible for all t ∈ Tk.

Definition 4. ([9]) Let t0 ∈ T and assume that A is a
regressive n × n-matrix-valued function. The unique
matrix-valued solution of the IVP

Y ∆ = A(t)Y, Y (t0) = I,

where I denotes as usual the n × n-identity matrix,
is called the matrix exponential function(at t0), and is
denoted by eA(·, t0).

Lemma 5. ([9]) If A is a regressive n × n-matrix-
valued functions on T, then
(i) e0(t, s) ≡ I and eA(t, t) ≡ I;
(ii) eA(σ(t), s) = (I + µ((t)A(t))eA(t, s);
(iii) eA(t, s) = e−1

A (s, t);
(iv) eA(t, s)eA(s, r) = eA(t, r).

Lemma 6. ([9]) Let A be a regressive n× n-matrix-
valued function on T and suppose that f : T → Rn is
rd-continuous. Let t0 ∈ T and

y∆ = A(t)y + f(t), y(t0) = y0
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has a unique solution y : T → Rn. Moreover, the
solution is given by

y(t) = eA(t, t0)y0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ.

Lemma 7. Let A be a regressive n×n-matrix-valued
function on T, then the function x(t) is an ω-periodic
solution of (1), if and only if x(t) is an ω-periodic
solution of the following:

x(t) =

∫ t+ω

t
G(t, s)f(s,x(s), (Φx)(δ−(τ1, s)))∆s,

where

G(t, s) =
[
eA(0, ω)− I

]−1
eA(t, σ(s)), (2)

and Φ(x) is defined in (3).

Proof. If u(t) is an ω-periodic solution of the second
equation of (1). By using Lemma 6, for s ∈ [t, t+ω]T,
we have

u(s) = eB(s, t)u(t)

+

∫ s

t
eB(s, σ(θ))D(θ)x(δ−(τ2, θ))∆θ.

Let s = t+ ω in the above equality, we have

u(t+ ω) = eB(t+ ω, t)u(t)

+

∫ t+ω

t
eB(t+ ω, σ(θ))D(θ)

x(δ−(τ2, θ))∆θ.

Noticing that u(t + ω) = u(t) and eB(t, t + ω) =
eB(0, ω), then

u(t) =

∫ t+ω

t
Ḡ(t, s)D(s)x(δ−(τ2, s))∆s

:= (Φx)(t), (3)

where

Ḡ(t, s) =
[
eB(0, ω)− I

]−1
eB(t, σ(s)). (4)

Now we claim that

eA(t+ ω, σ(s+ ω)) = eA(t, σ(s)).

In fact

eA(t+ ω, σ(s+ ω)) = eA(t+ ω, σ(s) + ω)

= eA(t, σ(s)).

It is clear that Ḡ(t, s) = Ḡ(t + ω, s + ω) for all
(t, s) ∈ T2 and u(t+ω) = u(t) when x is ω-periodic.

Denote (Φx) = ((Φ1x), (Φ2x), · · · , (Φnx))
T , then

any ω-periodic solutions of system (1) is equivalent to
that of the following equation

x∆(t) = A(t)x(t) + f(t,x(t), (Φx)(δ−(τ1, t))).

Again using Lemma 6, repeating the above pro-
cess, we have

x(t) =

∫ t+ω

t
G(t, s)f(s,x(s), (Φx)(δ−(τ1, s)))∆s,

where

G(t, s) =
[
eA(0, ω)− I

]−1
eA(t, σ(s)).

It is also clear that G(t, s) = G(t + ω, s + ω) for
all (t, s) ∈ T2. This completes the proof of Lemma
7.

Definition 8. Let X be a Banach space and K be a
closed nonempty subset of X , K is a cone if:

(1) αu+βv ∈ K for all u,v ∈ K and all α, β ≥ 0;

(2) u,−u ∈ K imply u = 0.

Define Kr =
{
x ∈ K

∣∣∥x∥ ≤ r
}

. Let α(x) de-
note the positive continuous concave functional onK,
that is α : K → [0,+∞) is continuous and satisfying

α(λx+ (1− λ)y) ≥ λα(x) + (1− λ)α(y)

for any x, y ∈ K, 0 < λ < 1, and we denote the set
K(α, a, b) = {x|x ∈ K, a ≤ α(x), ∥x∥ ≤ b}.

Let γ and θ be nonnegative continuous convex
functionals on K, α be a non-negative continuous
concave functional onK, and ψ be a nonnegative con-
tinuous functional on K. Then for positive real num-
bers a, b, c and d, we define the following convex sets:

K(γ, d) = {x ∈ K|γ(x) < d},
K(γ, α, b, d) = {x ∈ K|b ≤ α(x), γ(x) ≤ d},
K(γ, θ, α, b, c, d) = {x ∈ K|b ≤ α(x), θ(x) ≤ c,

γ(x) ≤ d},

and a closed set R(γ, ψ, a, d) = {x ∈ K| a ≤ ψ(x),
γ(x) ≤ d}.

The following fixed point theorem due to Avery
and Peterson is important in the prove of our main
results.

Theorem 9. ([20]) Let γ and θ be nonnegative con-
tinuous convex functionals on K, α be a nonnega-
tive continuous concave functional on K, and ψ be
a nonnegative continuous functional on K satisfying
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ψ(ρx) ≤ ρψ(x) for 0 ≤ ρ ≤ 1, such that for some
positive numbers E and d,

α(x) ≤ ψ(x) and ∥x∥ ≤ Eγ(x) (∗)

for all x ∈ K(γ, d). Suppose H : K(γ, d) →
K(γ, d) is completely continuous and there exist pos-
itive numbers a, b and c with a < b such that:

(1) {x ∈ K(γ, θ, α, b, c, d)|α(x) > b} ̸= ∅ and
α(Hx) > b for x ∈ K(γ, θ, α, b, c, d),

(2) α(Hx) > b for x ∈ K(γ, α, b, d) with θ(Hx)
> c,

(3) 0∈R(γ, ψ, a, d) and ψ(Hx) < a for x ∈
R(γ, ψ, a, d) with ψ(x) = a.

Then H has at least three fixed points x1,x2,x3 ∈
K(γ, d) such that:

γ(xi) ≤ d for i = 1, 2, 3, b < α(x1),

a < ψ(x2), with α(x2) < b, and ψ(x3) < a.

In order to obtain the existence of periodic solu-
tions of system (1), we make the following prepara-
tions:

Set

X =
{
x(t) : x(t) ∈ C(T,Rn),x(t+ ω) = x(t)

}
with the norm defined by ∥x∥ = sup

t∈[0,ω]T
|x(t)|0,

where |x(t)|0 =
n∑

i=1
|xi(t)|, then X is a Banach

space.
For convenience, we introduce the following no-

tations:

G(t, s) =
[
eA(0, ω)− I

]−1
eA(t, σ(s))

= (Gik(t, s))n×n,

Ḡ(t, s) =
[
eB(0, ω)− I

]−1
eB(t, σ(s))

= (Ḡik(t, s))n×n,

for t, s ∈ T, i, k = 1, 2, · · · , n. And

A0 := min
1≤i,k≤n

inf
s,t∈[0,ω]T

|Gik(t, s)|,

B0 := max
1≤i,k≤n

sup
s,t∈[0,ω]T

|Gik(t, s)|,

A1 := min
1≤k≤n

inf
s,t∈[0,ω]T

|
n∑

i=1

Gik(t, s)|,

B1 := max
1≤k≤n

sup
s,t∈[0,ω]T

|
n∑

i=1

Gik(t, s)|.

Hereafter, we assume that

(P1) fi(t, ξ, ζ) ≥ 0 for all (t, ξ, ζ) ∈ T×Rn
+×Rn

+, i =
1, 2, · · · , n.

(P2) f(t, φ(t), (Φφ)(δ−(τ1, t))) is a continuous func-
tion of t for each φ ∈ C(T,Rn

+), where Φ is de-
fined by (3).

(P3) For any L > 0 and ε > 0, there exists ν > 0,
such that{

ϕ, ψ ∈ C(T,Rn), ∥ϕ∥ ≤ L, ∥ψ∥ ≤ L,

∥ϕ− ψ∥ < ν
}

imply ∣∣f(t, ϕ(t),u1(δ−(τ1, t)))

−f(t, ψ(t),u2(δ−(τ1, t)))
∣∣
0
< ε,

for all t ∈ [0, ω]T, where

u1(δ−(τ1, t))

=

∫ δ−(τ1,t)+ω

δ−(τ1,t)
Ḡ(δ−(τ1, t), s)D(s)

ϕ(δ−(τ2, s))∆s

= (Φϕ)(δ−(τ1, t)),

and

u2(δ−(τ1, t))

=

∫ δ−(τ1,t)+ω

δ−(τ1,t)
Ḡ(δ−(τ1, t), s)D(s)

ψ(δ−(τ2, s))∆s

= (Φψ)(δ−(τ1, t)).

(P4) Aj > 0, Bj > 0, j = 0, 1.

Let

K =
{
x = (x1, x2, · · · , xn)T ∈ X : xi ≥ δ∥xi∥,
t ∈ [0, ω]T, i = 1, 2, · · · , n

}
, (5)

where δ = A0
B0

∈ (0, 1) and A0, B0 are defined by the
above. Obviously, K is a cone in X .

Define a mapping H by

(Hx)(t) =

∫ t+ω

t
G(t, s)f(s,x(s),

(Φx)(δ−(τ1, s)))∆s, (6)

for all x ∈ K, t ∈ T, where G(t, s) is defined by (2)
and

(Hx)(t) = ((H1x)(t), (H2x)(t), · · · ,
(Hnx)(t))

T , (7)
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where

(Hix)(t) =

∫ t+ω

t

n∑
k=1

Gik(t, s)fk(s,x(s),

(Φx)(δ−(τ1, s)))∆s,

where i = 1, 2, · · · , n.
In the following, we will give some lemmas con-

cerning K and H defined by (5) and (6), respectively.

Lemma 10. Assume that (P1), (P4) hold, then H :
K → K is well defined.

Proof. For any x ∈ K, it is clear that Hx ∈ PC(T).
In view of (6), for t ∈ T, we obtain

(Hx)(t+ ω)

=

∫ t+2ω

t+ω
G(t+ ω, s)f(s,x(s),

(Φx)(δ−(τ1, s)))∆s

=

∫ t+ω

t
G(t+ ω, u+ ω)f(u+ ω,x(u+ ω),

(Φx)(δ−(τ1, u+ ω)))∆u

=

∫ t+ω

t
G(t, u)f(u,x(u), (Φx)(δ−(τ1, u)))∆u

= (Hx)(t).

That is, (Hx)(t+ω) = (Hx)(t), t ∈ T. SoHx ∈ X .
For any x ∈ K, ∀ t ∈ [0, ω]T, we have

|Hix|

=

∣∣∣∣ ∫ t+ω

t

n∑
k=1

Gik(t, s)fk(s,x(s),

(Φx)(δ−(τ1, s)))∆s

∣∣∣∣
≤

∫ t+ω

t

n∑
k=1

|Gik(t, s)||fk(s,x(s),

(Φx)(δ−(τ1, s)))|∆s

≤ B0

(∫ t+ω

t

n∑
k=1

|fk(s,x(s),

(Φx)(δ−(τ1, s)))|∆s
)
, i = 1, 2, · · · , n.

So

∥Hix∥ = sup
t∈[0,ω]T

|Hix|

≤ B0

(∫ t+ω

t

n∑
k=1

|fk(s,x(s),

(Φx)(δ−(τ1, s)))|∆s
)
, i = 1, 2, · · · , n.

By (P1) and (P5), we get

(Hix)(t)

=

∫ t+ω

t

n∑
k=1

Gik(t, s)fk(s,x(s),

(Φx)(δ−(τ1, s)))∆s

=

∫ t+ω

t

n∑
k=1

|Gik(t, s)||fk(s,x(s),

(Φx)(δ−(τ1, s)))|∆s

≥ A0

(∫ t+ω

t

n∑
k=1

|fk(s,x(s),

(Φx)(δ−(τ1, s)))|∆s
)

=
A0

B0
B0

(∫ t+ω

t

n∑
k=1

|fk(s,x(s),

(Φx)(δ−(τ1, s)))|∆s
)

≥ δ∥Hix∥, i = 1, 2, · · · , n.

That is, Hx ∈ K. This completes the proof.

Lemma 11. Assume that (P1) − (P4) hold, then H :
K → K is completely continuous.

Proof. We first show that H is continuous. By (P3),
for any L > 0 and ε > 0, there exists a ν > 0 such
that{
ϕ, ψ ∈ C(T,Rn), ∥ϕ∥ ≤ L, ∥ψ∥ ≤ L, ∥ϕ−ψ∥ < ν

}
imply

sup
s∈[0,ω]T

|f(s, ϕ(s),u1(δ−(τ1, s)))

−f(s, ψ(s),u2(δ−(τ1, s)))|0 <
ε

B1ω
,

If x,y,∈ K with ∥x∥ ≤ L, ∥y∥ ≤ L, ∥x−y∥ <
ν, then

|(Hx)(t)− (Hy)(t)|0

≤
n∑

i=1

∣∣∣∣ ∫ t+ω

t

n∑
k=1

Gik(t, s)fk(s,x(s),

(Φx)(δ−(τ1, s)))∆s

−
∫ t+ω

t

n∑
k=1

Gik(t, s)fk(s,y(s),

(Φy)(δ−(τ1, s)))∆s

∣∣∣∣
≤

∫ t+ω

t

n∑
k=1

|
n∑

i=1

Gik(t, s)|
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|fk(s,x(s), (Φx)(δ−(τ1, s)))
−fk(s,y(s), (Φy)(δ−(τ1, s)))|∆s

< B1

(∫ t+ω

t
|f(s,x(s), (Φx)(δ−(τ1, s)))

−f(s,y(s), (Φy)(δ−(τ1, s)))|0∆s
)

< B1

(
ω

ε

B1ω

)
= ε

for all t ∈ [0, ω]T, which yields ∥Hx − Hy∥ =
sup

t∈[0,ω]T
|(Hx)(t) − (Hy)(t)|0 < ε, thus H is con-

tinuous.
Next, we show that H maps any bounded sets in

K into relatively compact sets. Now we first prove
that f maps bounded sets into bounded sets. Indeed,
let ε = 1, by (P3), for any ϑ > 0 , there exists
ν > 0 such that

{
x,y ∈ C(T,Rn), ∥x∥ ≤ ϑ, ∥y∥ ≤

ϑ, ∥x− y∥ < ν, s ∈ [0, ω]T
}

imply

|f(s,x(s), (Φx)(δ−(τ1, s)))
−f(s,y(s), (Φy)(δ−(τ1, s)))|0 < 1.

Choose a positive integer N such that ϑ
N < δ.

Let x ∈ C(T,Rn) and define xk(t) = x(t)k
N , k =

0, 1, 2, · · · , N . If ∥x∥ < ϑ, then

∥xk − xk−1∥ = sup
t∈[0,ω]T

∣∣∣∣x(t)kN
− x(t)(k − 1)

N

∣∣∣∣
0

≤ ∥x∥ 1

N
≤ ϑ

N
< δ.

Thus

|f(s,xk(s), (Φxk)(δ−(τ1, s)))

−f(s,xk−1(s), (Φxk−1)(δ−(τ1, s)))|0 < 1.

for all s ∈ [0, ω]T, these yield

|f(s,x(s), (Φx)(δ−(τ1, s)))|0
= |f(s,xN (s), (ΦxN )(δ−(τ1, s)))|0

≤
N∑
k=1

|f(s,xk(s), (Φxk)(δ−(τ1, s)))

−f(s,xk−1(s), (Φxk−1)(δ−(τ1, s)))|0
+|f(s, 0, 0)|0

< N + |f(s, 0, 0)|0 =:W. (8)

It follows from (7) and (8) that for t ∈ [0, ω]T,

∥Hx∥ = sup
t∈[0,ω]T

n∑
i=1

|(Hix)(t)|

≤
n∑

k=1

B1

(∫ ω

0
|fk(s,x(s),

(Φx)(δ−(τ1, s)))|∆s
)

= B1(|f(s,x(s), (Φx)(δ−(τ1, s)))|0ω)
≤ B1Wω := Q.

Finally, for t ∈ T, we have

(Hx)∆(t) = A(t)(Hx)(t) + f(t,x(t), (Φx)(δ−(τ1, t))).

So

|(Hx)∆(t)|0 ≤ |A(t)(Hx)(t)|0
+|f(t,x(t), (Φx)(δ−(τ1, t)))|0

≤ |A|Q+W,

where |A| = max
1≤i≤n

sup
t∈[0,ω]T

n∑
j=1

|aij(t)|.

Hence,
{
Hx : x ∈ K, ∥x∥ ≤ ϑ

}
is a family of

uniformly bounded and equicontinuous functions on
[0, ω]T. By the theorem of Arzela-Ascoli, we know
that the function H is completely continuous.

3 Main Results

Now, we fix η, l ∈ [0, ω]T, η ≤ l, and let the nonnega-
tive continuous concave functional α, the nonnegative
continuous convex functions θ, γ and the nonnegative
continuous function ψ be defined on the cone K by

α(x) = inf
t∈[η,l]T

|x(t)|0, ψ(x) = θ(x) = sup
t∈[0,ω]T

|x(t)|0,

γ(x) = sup
t∈[0,ω]T

|(Φx)(δ−(τ1, t))|0,

The functions defined above satisfy the following
relations

α(x) ≤ ψ(x) = θ(x), ∀ x ∈ K. (9)

Lemma 12. For x ∈ K, there exists a constantE > 0
such that

sup
t∈[0,ω]T

|x(t)|0 ≤ E sup
t∈[0,ω]T

|(Φx)(δ−(τ1, t))|0.

Proof. For x ∈ K, we have

sup
t∈[0,ω]T

|(Φx)(δ−(τ1, t))|0

= sup
t∈[0,ω]T

∫ δ−(τ1,t)+ω

δ−(τ1,t)
|Ḡ(δ−(τ1, t), s)D(s)

x(δ−(τ2, s))|0∆s
≥ Lδ∥x∥ = Lδ sup

t∈[0,ω]T
|x(t)|0,
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where L = max
1≤k≤n

sup
t∈[0,ω]T

|
n∑

i=1
Lik(t)|, (Lik(t))n×n =∫ ω

0 |Ḡ(δ−(τ1, t), s)D(s)|∆s. Setting E = 1
Lδ . This

completes the proof.

Moreover, for each x ∈ K,

∥x∥ = sup
t∈[0,ω]T

|x(t)|0 ≤
sup

t∈[0,ω]T
|(Φx)(δ−(τ1, t))|0

Lδ

= Eγ(x). (10)

We also find that ψ(ρx) = ρψ(x) for ∀ ρ ∈ [0, 1]T,
∀ x ∈ K. Therefore, by (10) the condition (∗) of
Theorem 9 is satisfied.

To present our main result, we assume there exist
constants a, b, d > 0 with a < b < b

δ <
d
L such that:

(S1) |f(t,u,v)|0 < d
B1Lω

, for 0 ≤ |u|0 ≤ Ed, 0 ≤
|v|0 ≤ d, t ∈ [0, ω]T;

(S2) |f(t,u,v)|0 > b
A1ω

, for b ≤ |u|0 ≤ b/δ, 0 ≤
|v|0 ≤ d, t ∈ [η, l]T;

(S3) |f(t,u,v)|0 < a
B1ω

, for 0 ≤ |u|0 ≤ a, 0 ≤
|v|0 ≤ d, t ∈ [0, ω]T.

Theorem 13. Under assumptions (S1) − (S3) and
(P1)−(P4), then the system (1) has at least three pos-
itive ω-periodic solutions x1,x2 and x3 satisfying,

sup
t∈[0,ω]T

|(Φxi)(δ−(τ1, t))|0 ≤ d, i = 1, 2, 3,

b < inf
t∈[0,ω]T

|x1(t)|0,

a < sup
t∈[0,ω]T

|x2(t)|0, with inf
t∈[η,l]T

|x2(t)|0 < b, and

sup
t∈[0,ω]T

|x3(t)|0 < a.

Proof. For x ∈ K(γ, d), there is γ(x) =
sup

t∈[0,ω]T
|(Φx)(δ−(τ1, t))|0 ≤ d. From Lemma 12, we

have sup
t∈[0,ω]T

|x(t)|0 ≤ Ed, that is 0 ≤ |x(t)|0 ≤ Ed,

for t ∈ [0, ω]T. By assumption (S1), for x ∈ K, there
is Hx ∈ K, and

|(Hx)(δ−(τ1, t))|0

=

∣∣∣∣ ∫ δ−(τ1,t)+ω

δ−(τ1,t)
G(δ−(τ1, t), s)f(s,x(s),

Φ(δ−(τ1, s)))∆s

∣∣∣∣
0

≤ B1

n∑
k=1

∫ ω

0
|fk(s,x(s),Φ(δ−(τ1, s)))|∆s

= B1

∫ ω

0
|f(s,x(s),Φ(δ−(τ1, s)))|0∆s

≤ B1

∫ ω

0

(
d

B1Lω

)
∆s

≤ d

L
,

then

γ(Hx)(t)

= sup
t∈[0,ω]T

|Φ(Hx)(t)|0

= sup
t∈[0,ω]T

∫ ω

0
|Ḡ(t, s)D(s)(Hx)(δ−(τ1, s))|0∆s

≤ L · d
L

= d.

Therefore, H : K(γ, d) → K(γ, d).
To check condition (1) of Theorem 9, we

take |x̃|0 = b/δ. It is easy to see that x̃ ∈
K(γ, θ, α, b, b/δ, d), and α(x̃) = b/δ > b, so {x ∈
K(γ, θ, α, b, b/δ, d)|α(x) > b} ̸= ∅.

Hence, for x ∈ K(γ, θ, α, b, b/δ, d), then

inf
t∈[η,l]T

|x(t)|0 ≥ b, sup
t∈[0,ω]T

|x(t)|0 ≤ b/δ,

sup
t∈[0,ω]T

|(Φx)(δ−(τ1, t))|0 ≤ d,

that is

b ≤ |x(t)|0 ≤ b/δ, 0 ≤ |(Φx)(δ−(τ1, t))|0 ≤ d,

for t ∈ [η, l]T.
Then, by assumption (S2), we have

α(Hx)(t)

= inf
t∈[η,l]T

{∣∣∣∣ ∫ t+ω

t
G(t, s)f(s,x(s),

(Φx)(δ−(τ1, s)))∆s

∣∣∣∣
0

}
≥ inf

t∈[0,ω]T

{∣∣∣∣ ∫ t+ω

t
G(t, s)f(s,x(s),

(Φx)(δ−(τ1, s)))∆s

∣∣∣∣
0

}
≥ A1

∫ t+ω

t
|f(s,x(s), (Φx)(δ−(τ1, s)))|0∆s

> A1

∫ ω

0

(
b

A1ω

)
∆s

= b.

i.e., α(Hx) > b for all x ∈ K(γ, θ, α, b, b/δ, d).
This shows that condition (1) of Theorem 9 is satis-
fied.
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Secondly, by the cone K defined by (5), we have
α(Hx) ≥ δθ(Hx) > δ(b/δ) = b, for all x ∈
K(γ, α, b, d) with θ(Hx) > b/δ. Thus condition (2)
of Theorem 9 is satisfied.

Finally, we show that condition (3) of Theorem
9 also holds. Clearly, as ψ(0) = 0 < a, there holds
0∈R(γ, ψ, a, d). Suppose that x ∈ R(γ, ψ, a, d) with
ψ(x) = a, this implies that for t ∈ [0, ω]T, there is
sup

t∈[0,ω]T
|x(t)|0 = a, sup

t∈[0,ω]T
|(Φx)(δ−(τ1, t))|0 ≤ d.

Hence,

0 ≤ |x(t)|0 ≤ a, 0 ≤ |(Φx)(δ−(τ1, t))|0 ≤ d,

for t ∈ [0, ω]T. So by assumption (S3), we have

ψ(Hx) = sup
t∈[0,ω]T

|(Hx)(t)|0

≤ B1

∫ ω

0
|f(s,x(s), (Φx)(δ−(τ1, s)))|0∆s

< B1

∫ ω

0

(
a

B1ω

)
∆s

= a.

So, the condition (3) of Theorem 9 is satisfied.
Therefore, by Theorem 9, we obtain that the oper-

ator H has at least three fixed points. This completes
the proof.

4 An Example

Considering the following system with time delays{
x∆(t) = A(t)x(t) + f(t,x(t),u(δ−(τ1, t))),
u∆(t) = B(t)u(t) +D(t)x(δ−(τ2, t)), t ∈ T, (11)

where

A(t) =

[
−1.5 1
1 −1.5

]
, B(t) =

[
1 0
0 1

]
,

D(t) =

[
1 0
0 1

]
,

and

|f(t,x(t),u(δ−(τ1, t)))|0

=


| sin 2πt|

10 + |x(t)|0+|u(δ−(τ1,t))|0
100 ,

|x|0 ≤ 65, 0 ≤ |u|0 ≤ 2× 104,

3500 + |x(t)|0
5×106+| sin 2πt| +

|u(δ−(τ1,t))|0
5×106+| cos 2πt| ,

|x|0 > 65, 0 ≤ |u|0 ≤ 2× 104,

where δ−(τ1, t) is delay function with t ∈ T.

From the above, we can get

eA(t, t0)

= e−0.5(t, t0)

[
1 0
0 1

]
+e−0.5(t, t0)

∫ t

t0

1

1− 2.5µ((s)
∆s

[
−2 1
1 −2

]
,

eA(t, σ(s)) = eA(t, s)
(
I + µ((s)A(s)

)−1
.

Case 1: T = R, and ω = 0.5,

eA(t, s) = e−0.5(t−s)

[
1− 2(t− s) (t− s)

(t− s) 1− 2(t− s)

]
,

eA(t, σ(s)) = eA(t, s),

G(t, s) =
(
eA(0, ω)− I

)−1
eA(t, s).

By a direct calculation, we can get

A0 = 1.3710, B0 = 3.0793,

A1 = 2.7420, B1 = 4.5208,

then δ = 0.4452, choose a = 65, b = 70, L =
1, d = 2× 104, and 0 ≤ |u|0 ≤ 2× 104, then

|f(t,x(t),u(δ−(τ1, t)))|0 <
1

10
+ 0.65

< 28.7560, for |x|0 ∈ [0, 65],

|f(t,x(t),u(δ−(τ1, t)))|0 < 3500 + 8.9848× 10−2

< 8848, for |x|0 ∈ [0, 4.4924× 104],

|f(t,x(t),u(δ−(τ1, t)))|0 > 3500 +
70

5× 106 + 2
> 51.0576, for |x|0 ∈ [70, 157.2327].

According to Theorem 13, when T = R, system
(11) exists at least three positive periodic solutions
x̂1, x̂2, x̂3, and

sup
t∈[0,ω]T

|x̂3(t)|0 < 65 < sup
t∈[0,ω]T

|x̂2(t)|0,

inf
t∈[η,l]T

|x̂2(t)|0 < 70 < inf
t∈[0,ω]T

|x̂1(t)|0.

Case 2: T = Z, and ω = 0.5,

eA(t, s) =

(
1

2

)(t−s)
[
1− 4(t−s)

3
2(t−s)

3
2(t−s)

3 1− 4(t−s)
3

]
,

eA(t, σ(s)) = eA(t, s)
(
I +A

)−1
,

G(t, s) =
(
eA(0, ω)− I

)−1
eA(t, s)(I +A)−1.

By a direct calculation, we can get

A0 = 1.4410, B0 = 3.5916,
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A1 = 2.4142, B1 = 6.8428,

then δ = 0.4012, choose a = 50, b = 80, L =
1, d = 2× 104, and 0 ≤ |u|0 ≤ 2× 104, then

|f(t,x(t),u(δ−(τ1, t)))|0 <
1

10
+ 0.5

< 7.3070, for |x|0 ∈ [0, 50],

|f(t,x(t),u(δ−(τ1, t)))|0 < 3500 + 0.0997

< 5846, for |x|0 ∈ [0, 4.9850× 104],

|f(t,x(t),u(δ−(τ1, t)))|0 > 3500 +
80

5× 106 + 2
> 66.2745, for |x|0 ∈ [80, 199.4018].

According to Theorem 13, when T = Z, system
(11) exists at least three positive periodic solutions
x̃1, x̃2, x̃3, and

sup
t∈[0,ω]T

|x̃3(t)|0 < 50 < sup
t∈[0,ω]T

|x̃2(t)|0,

inf
t∈[η,l]T

|x̃2(t)|0 < 80 < inf
t∈[0,ω]T

|x̃1(t)|0.
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